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Introduction

� Motivation

• Exterior calculus is the language of modern mechanics. With
discrete mechanicswe need adiscrete exterior calculus (DEC).

• If a problem solution satisfiesstructural constraintslike being
divergence free, then DEC is likely to be useful. Especially for
non-regular grids.

• Many examples in mimetic differencing literature, Douglas
Arnold’s example of resonant frequencies in electromagnetic
cavity etc. show importance of DEC-like methods. But they have
no systematic DEC development.

• Our other work in template matching, discrete shells and vector
field decomposition would benefit greatly from DEC.



5

Introduction

� Overall goal of this thesis

Start laying the foundation of a discrete theory of exterior calculus.

� Results of this thesis

• Previous works have included either vector fields or differential
forms. In our theorybothare included.

• For the first time in this field, we have introduced discrete sharps
and flats – operators connecting forms and vector fields.

• We show that the use ofcircumcentricdual meshes makes
possible a theory with forms and vector fields.

• We introduce discrete interior product (contraction) and Lie
derivatives – important in applications involving flows.

• We give some early results about discrete pullbacks.
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� Results (contd.)

• Formulas we derive for divergence, 2D curl and Laplace-Beltrami
are identical to those found by other means.

• There is a discrete divergence theorem in DEC.

• In other work we have derived a PDE for image matching,
modeled discrete shells and derived discrete vector field
decomposition. There are clear signs that these will connect to
DEC in the future.
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Introduction

� Limitations

• No convergence or stability studied !

• No numerical tests were done by us in the core DEC part.

• The space of all possible discrete sharps and flats has not been
explored. In particular we haven’t found an inverse pair.

• We found at least 2 definitions of the interior product and Lie
derivative. We don’t know if they are identitcal.

• Current DEC theory places restrictions on types of meshes : we
don’t know if these can be lifted.

• DEC as developed so far works only with nearest neighbor
interactions and yields “lowest order” formulas. We don’t know if
this is a fundamental limitation.
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Introduction

� Discretization

• Approximate manifoldM by a cell complexK and its dual cell
complex.

• Define discrete forms, vector fields and operators on these
complexes.

• DEC isnot exterior calculus on charts. It is a geometric and
combinatorial calculus.

• Difference from discrete mechanics : discretization spread.

• Unique in discrete theory : duals result in operator proliferation.
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Background
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Exterior Calculus Operators

Given a smooth manifoldM the following spaces and operators are
defined :

• p-forms inΩp(M) and vector fields inX(M)

• Exterior derivatived : Ωp(M) → Ωp+1(M)

• Hodge star∗ : Ωp(M) → Ωn−p(M)

• Wedge product∧ : Ωk(M)×Ωl(M) → Ωk+l(M)

• Sharp map] : Ω1(M) → X(M)

• Flat map[ : X(M) → Ω1(M)

• Interior product (contraction)iX of forms with vector field

• Lie derivative£X of forms and vector fields
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History and Previous Work

• Physics : Tonti [2002]; Sen et al. [2000]; Schwalm et al. [1999]

• Computational Electromagnetism : Bossavit [2002, 2001];
Hiptmair [2001, 2002]; Teixeira [2001]; Gross and Kotiuga
[2001]

• Mimetic Discretization : Hyman and Shashkov [1997a,b]

• Numerical Analysis : Arnold [2003]; Mattiussi [1997]

• Computer Graphics : Meyer et al. [2002]; Gu [2002]

• Mathematics : Dezin [1995]; Mansfield and Hydon [2001];
Harrison [1993]
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Primal and Dual Complexes

� A simplicial complex (doesn’t have to be flat)



13

Primal and Dual Complexes

� Circumcentric subdivision of the complex
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Primal and Dual Complexes

� Examples of dual cells
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Primal and Dual Complexes

� Restrictions and notations

• Restriction : circumcenters must lie inside each simplex ;
complex must be aC0 oriented manifold.

• Simplices written asσ0, σ1, σ2 etc. (superscript is dimension).

• |σp| is p-volume, D(σp) (dimensionn − p) is dual ofσp, ?σp is
dual with subdivision information attached.? ? σp := ±σp.

• σq ≺ σp meansσq is a proper face ofσp.

• K simplicial complex, D(K) is dual,?K is dual with subdivision
information,|K| is underlying space with subspace topology.

• We found an easy computational interpretation of dual’s
orientation (in algebraic topology you need relative homology
groups etc.).
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Four Types of Interpolation

� Primal data
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Four Types of Interpolation

� Primal to dual interpolation : constant



18

Four Types of Interpolation

� Primal data
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Four Types of Interpolation

� Primal to primal interpolation : linear
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Four Types of Interpolation

� Dual data
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Four Types of Interpolation

� Dual to dual interpolation : nonlinear

• Based on our new barycentric coordinates for convex polyhedra
Warren et al. [2003]. Mesh is assumed to be flat.
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Four Types of Interpolation

� Dual data
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Four Types of Interpolation

� Dual to primal interpolation : constant
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Discrete Forms

� Example of a discrete 0-form : numbers on vertices

11

80 52 17 9

6679

31

23

45
5
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Discrete Forms

� Example 1-form : numbers on oriented edges

78

9
632

98

66 9551

1

10
33

8
34

321

57

11
5

83
45
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Discrete Forms

� Example 2-form : numbers on oriented triangles

54

43
5

9

2611 89

47

33

61
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Exterior Derivative

� Compute exterior derivative for this 1-form

78

9
632

98

66 9551

1

10
33

8
34

321

57

11
5

83
45
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Exterior Derivative

� Computed on blue triangle

78

9
632

98

66 9551

1

10
33

8
34

321

57

11
5

8345
3

45

−34

• Just add up values shown on little triangle on right.

• Discreted is the coboundary :〈dαp, σp+1〉 = 〈αp, ∂σp+1〉
• Discrete Stokes’ theorem is true by definition.

• d ◦ d = 0.
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Review of smooth flat and sharp

• Smooth sharp (]) and flat are inverses of each other :

α] · V = α(V)

X[(V) = X · V(
X[
)]
· V = X[(V) = X · V(

α]
)[

(V) = α] · V = α(V) .

• Gradient∇f = (df)] or equivalently(∇f)[ = df.
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Contributions
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Hodge Star and Codifferential

e

T

1

Area(T)
〈α, T〉 =

1

Length(e)
〈∗α, e〉

1

|σp|
〈α, σp〉 =

1

| ? σp|
〈∗α, ?σp〉 .
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Hodge Star and Codifferential

• Information transfer between primal and dual.

• Used below to define codifferential.

• Codifferential used to define div, curl, Laplace-Beltrami.

• Codifferentialδβ = (−1)np+1 ∗ d ∗ β.
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Discrete Vector Fields

� A dual vector field : mesh can be non-flat
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Discrete Vector Fields

� A primal vector field : mesh must be flat
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Flat Operator Connecting Forms and Vector Fields

� Proliferation of Discrete Flats
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PDP Flat

� Primal vector field −→ Primal edges
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PDP Flat

� Primal data ; Dual interpolation ; Primal destination
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PPP Flat

� Primal vector field −→ primal edges
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PPP Flat

� Primal data ; Primal interpolation ; Primal destination
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DDP Flat

� Dual vector field −→ Primal edges
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DDP Flat

� Dual data ; Dual interpolation ; Primal destination
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DPP Flat

� Dual vector field −→ Primal edges
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DPP Flat

� Dual data ; Primal interpolation ; Primal destination
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Primal-Primal Flats
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Dual-Primal Flats



46

Proliferation of Discrete Flats

Types of dataTypes of interpolationTypes of destinationTotal
2 2 2 8

• Destination primal :[ppp, [pdp, [dpp, [ddp,

• Destination dual :[ppd, [pdd, [dpd, [ddp.
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Derivation of Flat Operators

� Example : DPP Flat

Let X be a smooth vector field on a smooth Riemannian manifoldM

andr a smooth curve onM of lengthL.

∫
r
X[ =

∫ tb

ta

X(r(t)) · ṙ(t)dt (by definition)

=

∫L

0
X(r(s)) · r̂(s)ds (parametrization indep.)
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Derivation of Flat Operators

� Example : DPP Flat

Let X be a constant vector field on affine spaceM andr a straight
line onM.

∫
r
X[ =

∫L

0
X · r̂(s)ds

= X · r̂(0)L = X ·~r
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Derivation of Flat Operators

� Example : DPP Flat (contd.)

∫
r
X[ = X · r̂(0)L = X ·~r

Easy case Interesting case
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DPP Flat
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DPP Flat

• The colored region has a name : support volume.
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DPP Flat

• Take a weighted sum of the two vectors.

• Weighting factor= area of one small colored triangle divided by
total area of small colored triangles.

• Equivalent to fraction of dual edge in each triangle.

〈X[, σ1〉 =
∑

σn�σ1

| ? σ1 ∩ σn|

| ? σ1|
X(?σn) · ~σ1



53

DPP Flat

� Lack of inverse

Proposition.The discrete flat[dpp is neither surjective nor injective.
Thus it does not even have a one-sided inverse.

� Uniqueness

• The weighting factors are the unique factors such that discrete
divergence theorem is satisfied.
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A Primal-Dual Sharp for Exact Forms : PD Grad

• A simple calculation in a triangle using linear basis functionsφ0,
φ1 andφ2.

f = f0φ0 + f1φ1 + f2φ2

∇f = f0∇φ0 + f1∇φ1 + f2∇φ2

= −f0∇φ1 − f0∇φ2 + f1∇φ1 + f2∇φ2

= (f1 − f0)∇φ1 + (f2 − f0)∇φ2 .

• Formula involves 1-form valuesdf and normals.

• Can be generalized to a primal-dual sharp for exact forms in any
dimension.
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A Primal-Dual Sharp for Exact Forms : PD Grad

∇f = (df)] = (f1 − f0)∇φ1 + (f2 − f0)∇φ2
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A Primal-Primal Sharp

α](σ0) =
∑
[v,σ0]

〈α, [v, σ0]〉
∑

σn�[v,σ0]

| ? σ0 ∩ σn|

|σn|
∇φv,σn
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Separation of Forms and Vector Fields

• Common identifications made in this field :

F = F1
∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z

F[ = F1dx + F2dy + F3dz

∗(F[) = F3dx ∧ dy − F2dx ∧ dz + F1dy ∧ dz

• But that should not be done in a general theory since :

(£Xα)] 6= £X(α])

(∗(£Xβ))] 6= £X((∗β)])
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Divergence

• Define discrete divergence by div(X) = −δX[ .

• Discrete divergence theorem is satisfied :

|?σ0|
〈

div(X), σ0
〉

=
∑

σ1�σ0

∑
σn�σ1

|?σ1∩σn|

(
X(?σn) ·

~σ1

|σ1|

)
.

• The 2D version of this appears in Polthier and Preuss [2002].

• Preliminary “thoughts” on the Lie derivative definition of
divergence : div(X)µ = £Xµ.
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Curl in 3D

• Define 3D curl by curl(X) = (∗d(X[))].

• Dual-primal 3D curl satisfying usual vector calculus identities
found in our other work (Tong et al. [2003 (to appear]). No
derivation yet in DEC.
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Curl in 2D

• Dual-primal 2D curl in DEC (∗dX[) matches one found by
Polthier and Preuss [2002]:〈

curl(X), σ0
〉

=
1

2

∑
σ2�σ0

X(?σ2) · ~σ1(σ2)

whereσ1(σ2) is the outer edge of triangleσ2.
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Laplace-Beltrami

• In computer graphics recently Meyer et al. [2002] found this
formula for Laplace-Beltrami for a 2D triangle mesh embedded in
3D :

∆f(xi) =
1

2A
∑

j∈N1(i)

(cot αij + cot βij) (f(xi) − f(xj))

x i
βij

jx
ijα
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Laplace-Beltrami

• By using definitions of DEC we find exactly the same formula. In
DEC notation it is :

〈∆f, σ0〉 = −
1

| ? σ0|

∑
σ1=[σ0,v]

| ? σ1|

|σ1|
(f(v) − f(σ0)) .
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Wedge Product
� Primal-Primal Wedge

〈αk∧βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
〈αk,

[
vτ(0), . . . , vτ(k)

]
〉〈βl,

[
vτ(k), . . . , vτ(k+l)

]
〉



64

Wedge Product
� Primal-Primal Wedge

〈αk∧βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
〈αk,

[
vτ(0), . . . , vτ(k)

]
〉〈βl,

[
vτ(k), . . . , vτ(k+l)

]
〉
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Wedge Product
� Primal-Primal Wedge

〈αk∧βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
〈αk,

[
vτ(0), . . . , vτ(k)

]
〉〈βl,

[
vτ(k), . . . , vτ(k+l)

]
〉

α

β
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Wedge Product
� Primal-Primal Wedge

〈αk∧βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
〈αk,

[
vτ(0), . . . , vτ(k)

]
〉〈βl,

[
vτ(k), . . . , vτ(k+l)

]
〉

β

α
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Wedge Product
� Primal-Primal Wedge

〈αk∧βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
〈αk,

[
vτ(0), . . . , vτ(k)

]
〉〈βl,

[
vτ(k), . . . , vτ(k+l)

]
〉

β

α
• And so on for other corners.
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Wedge Product

� Properties

(i) Anti-commutativity αk ∧ βk = (−1)klβl ∧ αk.

(ii) Leibniz rule d(αk ∧ βl) = (dαk) ∧ βl + (−1)kαk ∧ (dβl).

(iii) Associativity for closed formsForαk ∈ Ck(K), βl ∈ Cl(K),
γm ∈ Cm(K), such thatdαk = 0, dβl = 0, dγm = 0, we have
that,(αk ∧ βl) ∧ γm = αk ∧ (βl ∧ γm).
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Interior Product (a.k.a Contraction)

� Algebraic definition

• We proved the following identity of smooth exterior calculus :

iXα = (−1)k(n−k) ∗ (∗α ∧ X[) .

• This can be used todefineiX.
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Interior Product

� Dynamic definition

• Following identity is true in smooth case – given a smooth
manifoldM, vector fieldX onM and submanifoldS :∫

S
iXβ =

d

dt

∣∣∣∣
t=0

∫
ES

X
(t)

β

• HereES
X(t) is region swept out by flowing a submanifoldS along

the flow ofX for time t.

• This leads to a combinatorial definition.
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Lie Derivative

• Dynamic will be based on the following smooth case result we
proved. The combinatorial formula not worked out yet.∫

S
£Xβ =

d

dt

∣∣∣∣
t=0

∫
St

β

• Algebraic via Cartan homotopy formula

£Xω = iXdω + diXω

• Possible problem with algebraic definition : the Leibniz rule
might be only satisfied for closed forms (recall wedge properties).
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Other Work

� Template Matching

• PDEs for matching images inspired by averaging in fluid
mechanics.

• Find shortest curve on diffeomorphism group.

• Different metrics on diffeomorphism group give different PDEs.

• Averaged Template Matching Equation in spatial dimensionn

vt + (div u)v + (u · ∇)v + (Du)Tv = 0

v = (1 − α2∆)u

• See Hirani et al. [2001].
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Other Work

� Template Matching Joint work with S. Jon Chapman.

• Initial conditions derived from natural boundary conditions :

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• The equations can be written in div, grad, curl form (Holm
[2003]) and mimetic differencing has been applied to compute
soliton strings solutions by Darryl Holm and Martin Staley at Los
Alamos.



74

Other Work

� Discrete Shells
Joint work with E. Grinspun, M. Desbrun, P. Schröder.

• Shells : one dimension much smaller.

• Given triangle meshis the surface.

• Define stored energy function discretely.
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Other Work

� Discrete Shells

Joint with E. Grinspun, M. Desbrun, P. Schröder. Computations by E. Grinspun. To appear in ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), July 2003.
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Other Work

� Multiscale Vector Field Processing in 3D
Joint work with Y. Tong, S. Lombeyda, M. Desbrun.

• Discrete 3D dual vector field given in tetrahedra.

• We give Hodge decomposition of given field.

• Applications in incompressible fluid mechanics and in
incompressible elasticity.

• We also find the potentials and so processing possible.

• Discrete div, grad, curl satisfy usual identities :

div ◦ curl = 0

curl◦grad= 0

div ◦grad= ∆
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Other Work

� Multiscale Vector Field Processing in 3D

Joint work with Y. Tong, S. Lombeyda, M. Desbrun. Computations by Y. Tong and S. Lombeyda.

2D example shown for clarity. To appear in ACM Transactions on Graphics (SIGGRAPH 2003).
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Speculative Work
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Lattices

� Square and Hexagonal Grid

p a

b

c

d

a

b
0

c

c

a

b
0
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Getting General Tensors Into DEC ?

� A Primal-Primal Natural Pairing

α(X)(σ0) = α](σ0) · (X(σ0))

� Use Tensor Product of 1-forms to Define Tensors ?

(α1 ⊗ β1)(U, V) =
1

2
[α(U)β(V) + α(V)β(U)]
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Conclusions



82

Conclusions

• We showed that by choosing approproate geometric and
combinatorial defintions we can start building a discrete theory of
extrior calculus.

• Discrete theory parallels smooth theory but has a variety of
operators due to duality.

• There are enough promising hints to make implementation
worthwhile. Many existing important formulas are reproduced by
simple algebraic operations of DEC.
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Future Work : Immediate

� Fill Important Gaps in Current DEC Theory

• What is the DEC derivation of the curl we found in vector field
work ?

• Which of the various sharps and flats combine to have nice
properties and which don’t ?

• Shouldn’t a vector be a pair of points as in discrete mechanics ?

• Can we remove the restriction of flatness of mesh for primal
vector fields ?

• Continue work on discrete pullback.
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Future Work : Next on List

� Implementation, convergence, applications

• This summer I’ll be working on implementing DEC and its
applications with 2 SURF students.

• We are trying to formulate convergence questions in DEC with
the help of some researchers.

• Extensions for and applications to lattice theory are being
considered by some collaborators.

• Applications to electromagnetism started by some collaborators.



85

Future Work : Research Program

• We want to extend the DEC theory :

◦ General discrete tensors,

◦ Multiscale meshes,

◦ General cell complexes.

• Links with discrete mechanics : relationship between
multisymplectic geometry and DEC.
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Primal and Dual Complexes

� Orienting the Primal Complex

• Orientation is class of vertex permutation

• Equivalent tocorner or polyline basis

• Induced orientation on(n − 1)-simplex

• Affine space calledplaneof a simplex P(σp)

• Manifold-like simplcial complex

• Comparing orientations
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Primal and Dual Complexes

� Orienting the Primal Complex
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Primal and Dual Complexes

� Forming the Dual Complex

• First subdivideprimal, then aggregate smaller simplices into
dual cells

• We usecircumcentric subdivision

• Restriction :fat manifold-like simplicial complexes

• Dual cells written as D(σ0), D(σ1), D(σ2) etc.
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Primal and Dual Complexes

� Forming the Dual Complex

σ0, 0-simplex σ1, 1-simplex σ2, 2-simplex σ3, 3-simplex

D(σ0) 3-cell D(σ1), 2-cell D(σ2), 1-cell D(σ3), 0-cell

Vσ0 Vσ1 Vσ2 Vσ3
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Primal and Dual Complexes

� Orienting the Dual Complex

• Subdivision simplexandelementary dual cell

• Transversailty of the two

• Identical planes of various pieces
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Primal and Dual Complexes

� Orienting the Dual Complex

Dual
1

2

3 Ambient orientation

Primal Primal

1

2 Ambient orientation

Dual

(a) (b)

FIGURE 1: Relationship between orientations of embedding space, embedded “primal” manifold
and an embedded “dual” manifold transverse to the primal
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Primal and Dual Complexes

� Orienting the Dual Complex
1

c(01)

c(012)

2
0

FIGURE 2: Orienting an elementary dual simplex.
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Primal and Dual Complexes

� Orienting the Dual Complex

primal simplex :σp = σ1 = [v1, v0]

σ0 ≺ σ1 ≺ σ2 instance :v0 ≺ [v1, v0] ≺ [v0, v1, v2][
c
(
σ0
)

, c
(
σ1
)]

= [v0, c01]

elementary dual :s
[
c
(
σ1
)

, c
(
σ2
)]

= s[c01, c012]

subdivision simplex :
[
c
(
σ0
)

, c
(
σ1
)]

= [v0, c01] .
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Forms and Vector Fields

� Discrete Vector Fields
A discrete dual vector fieldX on a fat manifold-like simplicial
complexK is X : K(0) → RN such thatX(D(σn)) ∈ P(σn). This
space calledXd(?K).

Let K be aflat fat manifold-like simplicial complex of dimensionn.
A discrete primal vector field X is X : K(0) → Rn. This space
called byXd(K).


